Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 8(2): e0119822, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943059

RESUMO

The class Halobacteria is one of the most diverse groups within the Euryarchaeota phylum, whose members are ubiquitously distributed in hypersaline environments, where they often constitute the major population. Here, we report the discovery and isolation of a new halophilic archaeon, strain F3-133T exhibiting ≤86.3% 16S rRNA gene identity to any previously cultivated archaeon, and, thus, representing a new order. Analysis of available 16S rRNA gene amplicon and metagenomic data sets showed that the new isolate represents an abundant group in intermediate-to-high salinity ecosystems and is widely distributed across the world. The isolate presents a streamlined genome, which probably accounts for its ecological success in nature and its fastidious growth in culture. The predominant osmoprotection mechanism appears to be the typical salt-in strategy used by other haloarchaea. Furthermore, the genome contains the complete gene set for nucleotide monophosphate degradation pathway through archaeal RuBisCO, being within the first halophilic archaea representatives reported to code this enzyme. Genomic comparisons with previously described representatives of the phylum Euryarchaeota were consistent with the 16S rRNA gene data in supporting that our isolate represents a novel order within the class Halobacteria for which we propose the names Halorutilales ord. nov., Halorutilaceae fam. nov., Halorutilus gen. nov. and Halorutilus salinus sp. nov. IMPORTANCE The discovery of the new halophilic archaeon, Halorutilus salinus, representing a novel order, family, genus, and species within the class Halobacteria and phylum Euryarchaeota clearly enables insights into the microbial dark matter, expanding the current taxonomical knowledge of this group of archaea. The in-depth comparative genomic analysis performed on this new taxon revealed one of the first known examples of an Halobacteria representative coding the archaeal RuBisCO gene and with a streamlined genome, being ecologically successful in nature and explaining its previous non-isolation. Altogether, this research brings light into the understanding of the physiology of the Halobacteria class members, their ecological distribution, and capacity to thrive in hypersaline environments.


Assuntos
Euryarchaeota , Halobacteriales , Filogenia , RNA Ribossômico 16S/genética , Ecossistema , Ribulose-Bifosfato Carboxilase/genética , Análise de Sequência de DNA , Euryarchaeota/genética , Halobacteriales/genética
2.
Extremophiles ; 27(1): 2, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469177

RESUMO

Halophilic archaea are the dominant type of microorganisms in hypersaline environments. The diversity of halophilic archaea in Zehrez-Chergui (Saharian chott) was analyzed and compared by both analysis of a library of PCR amplified 16S rRNA genes and by cultivation approach. This work, represents the first of its type in Algeria. A total cell count was estimated at 3.8 × 103 CFU/g. The morphological, biochemical, and physiological characterizations of 45 distinct strains, suggests that all of them might be members of the class Halobacteria. Among stains, 23 were characterized phylogenetically and are related to 6 genera of halophilic archaea.The dominance of the genus Halopiger, has not been reported yet in other hypersaline environments. The 100 clones obtained by the molecular approach, were sequenced, and analyzed. The ribosomal library of 61 OTUs showed that the archaeal diversity included uncultured haloarcheon, Halomicrobium, Natronomonas, Halomicroarcula, Halapricum, Haloarcula, Halosimplex, Haloterrigena, Halolamina, Halorubellus, Halorussus and Halonotius. The results of rarefaction analysis indicated that the analysis of an increasing number of clones would have revealed additional diversity. Surprisingly, no halophilic archaea were not shared between the two approaches. Combining both types of methods was considered the best approach to acquire better information on the characteristics of soil halophilic archaea.


Assuntos
Euryarchaeota , Halobacteriales , Archaea/genética , RNA Ribossômico 16S/genética , Argélia , Filogenia , Halobacteriales/genética , Euryarchaeota/genética , DNA Arqueal/genética
3.
Microbiol Spectr ; 9(3): e0178221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908470

RESUMO

Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less positively charged. Here, the analysis is extended to non-archaeal halophilic bacteria, eukaryotes, and halotolerant archaea. The net charges (pH 7.4) of the r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that, as a general rule, the net charges of individual proteins remained mostly basic as the salt tolerance of the bacterial strains increased from 5 to 15%. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18% to 21% salt for their growth. All three strains have higher numbers of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins are a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions: these were positively charged despite the halophilicity of the organisms. IMPORTANCE The net charges (at pH 7.4) of the ribosomal proteins (r-proteins) that comprise the S10-spc cluster show an inverse relationship with the halophilicity/halotolerance levels in both bacteria and archaea. In non-halophilic bacteria, the S10-spc cluster r-proteins are generally basic (positively charged), while the rest of the proteomes in these strains are generally acidic. On the other hand, the whole proteomes of the extremely halophilic strains are overall negatively charged, including the S10-spc cluster r-proteins. Given that the distribution of charged residues in the ribosome exit tunnel influences cotranslational folding, the contrasting charges observed in the S10-spc cluster r-proteins have potential implications for the rate of passage of these proteins through the ribosomal exit tunnel. Furthermore, the universal protein uL2, which lies in the oldest part of the ribosome, is always positively charged irrespective of the strain/organism it belongs to. This has implications for its role in the prebiotic context.


Assuntos
Archaea/metabolismo , Bacteroidetes/metabolismo , Eucariotos/metabolismo , Firmicutes/metabolismo , Proteínas Ribossômicas/química , Cloreto de Sódio/metabolismo , Archaea/genética , Proteínas de Bactérias/genética , Bacteroidetes/genética , Eucariotos/genética , Firmicutes/genética , Halobacteriales/genética , Ribossomos/química , Eletricidade Estática
4.
Syst Appl Microbiol ; 44(6): 126249, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34547593

RESUMO

Nine pure cultures of neutrophilic haloaloarchaea capable of anaerobic growth by carbohydrate-dependent sulfur respiration were isolated from hypersaline lakes in southwestern Siberia and southern Russia. According to phylogenomic analysis the isolates were closely related to each other and formed a new species within the genus Halapricum (family Haloarculaceae). They have three types of catabolism: fermentative, resulting in H2 formation; anaerobic respiration using sulfur compounds as e-acceptors and aerobic respiration. Apart from elemental sulfur, all isolates can also use three different sulfoxides as acceptors and the type strain also grows with thiosulfate, reducing it partially to sulfide and sulfite. All strains utilized sugars and glycerol as the e-donors and C source for anaerobic growth and some can also grow with alpha-glucans, such as starch and dextrins. The major respiratory menaquinones are MK-8:8 and MK-8:7, but 5-19% consists of "thermoplasmata" quinones (MMK-8:8 and MMK-8:7), whose occurrence in haloarchaea is unprecedented. On the basis of their unique physiological properties and results of phylogenomic analysis, the isolates are suggested to be classified into a novel species Halapricum desulfuricans sp. nov. (type strain HSR12-2T = JCM 34032T = UNIQEM U1001T).


Assuntos
Halobacteriales , Lagos , Carboidratos , DNA Bacteriano , Halobacteriales/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre
5.
Mar Drugs ; 19(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34436281

RESUMO

This study presents a comparative analysis of halophiles from the global open sea and coastal biosystems through shotgun metagenomes (n = 209) retrieved from public repositories. The open sea was significantly enriched with Prochlorococcus and Candidatus pelagibacter. Meanwhile, coastal biosystems were dominated by Marinobacter and Alcanivorax. Halophilic archaea Haloarcula and Haloquandratum, predominant in the coastal biosystem, were significantly (p < 0.05) enriched in coastal biosystems compared to the open sea. Analysis of whole genomes (n = 23,540), retrieved from EzBioCloud, detected crtI in 64.66% of genomes, while cruF was observed in 1.69% Bacteria and 40.75% Archaea. We further confirmed the viability and carotenoid pigment production by pure culture isolation (n = 1351) of extreme halophiles from sediments (n = 410 × 3) sampling at the Arabian coastline of India. All red-pigmented isolates were represented exclusively by Haloferax, resistant to saturated NaCl (6 M), and had >60% G + C content. Multidrug resistance to tetracycline, gentamicin, ampicillin, and chloramphenicol were also observed. Our study showed that coastal biosystems could be more suited for bioprospection of halophiles rather than the open sea.


Assuntos
Carotenoides/metabolismo , Halobacteriales/genética , Haloferax/genética , Organismos Aquáticos , Halobacteriales/metabolismo , Haloferax/metabolismo , Humanos , Índia , Oceanos e Mares , Filogenia , Fitoterapia
6.
Genes (Basel) ; 12(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202810

RESUMO

BACKGROUND: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. RESULTS: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. CONCLUSIONS: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.


Assuntos
Proteínas Arqueais/genética , Halobacteriales/genética , Haloferax volcanii/genética , Proteínas Arqueais/classificação , Halobacteriales/classificação , Anotação de Sequência Molecular
7.
Biosci Biotechnol Biochem ; 85(9): 1986-1994, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34215877

RESUMO

3-Isopropylmalate dehydrogenase (IPMDH) catalyzes oxidative decarboxylation of (2R, 3S)-3-isopropylmalate to 2-oxoisocaproate in leucine biosynthesis. In this study, recombinant IPMDH (HjIPMDH) from an extremely halophilic archaeon, Haloarcula japonica TR-1, was characterized. Activity of HjIPMDH increased as KCl concentration increased, and the maximum activity was observed at 3.0 m KCl. Analytical ultracentrifugation revealed that HjIPMDH formed a homotetramer at high KCl concentrations, and it dissociated to a monomer at low KCl concentrations. Additionally, HjIPMDH was thermally stabilized by higher KCl concentrations. This is the first report on haloarchaeal IPMDH.


Assuntos
3-Isopropilmalato Desidrogenase/metabolismo , Proteínas Arqueais/metabolismo , Halobacteriales/enzimologia , 3-Isopropilmalato Desidrogenase/química , Sequência de Aminoácidos , Biopolímeros/química , Genoma Arqueal , Halobacteriales/genética , Concentração de Íons de Hidrogênio , Cloreto de Potássio/análise , Temperatura
8.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255041

RESUMO

Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; whereas the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the Halobacteriales, and Archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (distantly related groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the Asgardarchaea, TACK Group, euryarchaeota, and the DPANN superphylum. In addition, we assembled draft genomes from seven new representatives of the Nanohaloarchaea from distinct geographic locations. Phylogenies derived from these data imply that the highly conserved ATP synthase catalytic/noncatalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. We also employ a novel gene family distance clustering strategy which shows this sisterhood relationship is not likely the result of a recent gene transfer. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum, in particular, the inclusion of the Nanohaloarchaea in DPANN.


Assuntos
Genoma Arqueal , Halobacteriales , Archaea/genética , Halobacteriales/genética , Filogenia
9.
Genes (Basel) ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478024

RESUMO

Halotolerant lipolytic enzymes have gained growing interest, due to potential applications under harsh conditions, such as hypersalinity and presence of organic solvents. In this study, a lipolytic gene, est56, encoding 287 amino acids was identified by functional screening of a compost metagenome. Subsequently, the gene was heterologously expressed, and the recombinant protein (Est56) was purified and characterized. Est56 is a mesophilic (Topt 50 °C) and moderate alkaliphilic (pHopt 8) enzyme, showing high thermostability at 30 and 40 °C. Strikingly, Est56 is halotolerant as it exhibited high activity and stability in the presence of up to 4 M NaCl or KCl. Est56 also displayed enhanced stability against high temperatures (50 and 60 °C) and urea (2, 4, and 6 M) in the presence of NaCl. In addition, the recently reported halotolerant lipolytic enzymes were summarized. Phylogenetic analysis grouped these enzymes into 13 lipolytic protein families. The majority (45%) including Est56 belonged to family IV. To explore the haloadaptation of halotolerant enzymes, the amino acid composition between halotolerant and halophilic enzymes was statistically compared. The most distinctive feature of halophilic from non-halophilic enzymes are the higher content of acidic residues (Asp and Glu), and a lower content of lysine, aliphatic hydrophobic (Leu, Met and Ile) and polar (Asn) residues. The amino acid composition and 3-D structure analysis suggested that the high content of acidic residues (Asp and Glu, 12.2%) and low content of lysine residues (0.7%), as well as the excess of surface-exposed acidic residues might be responsible for the haloadaptation of Est56.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxilesterase/metabolismo , Halobacteriales/enzimologia , Metagenoma , Salinidade , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Carboxilesterase/química , Carboxilesterase/genética , Carboxilesterase/isolamento & purificação , Clonagem Molecular , Compostagem , Ensaios Enzimáticos , Estabilidade Enzimática/genética , Halobacteriales/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
10.
RNA ; 27(2): 133-150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184227

RESUMO

The large ribosomal RNAs of eukaryotes frequently contain expansion sequences that add to the size of the rRNAs but do not affect their overall structural layout and are compatible with major ribosomal function as an mRNA translation machine. The expansion of prokaryotic ribosomal RNAs is much less explored. In order to obtain more insight into the structural variability of these conserved molecules, we herein report the results of a comprehensive search for the expansion sequences in prokaryotic 5S rRNAs. Overall, 89 expanded 5S rRNAs of 15 structural types were identified in 15 archaeal and 36 bacterial genomes. Expansion segments ranging in length from 13 to 109 residues were found to be distributed among 17 insertion sites. The strains harboring the expanded 5S rRNAs belong to the bacterial orders Clostridiales, Halanaerobiales, Thermoanaerobacterales, and Alteromonadales as well as the archael order Halobacterales When several copies of a 5S rRNA gene are present in a genome, the expanded versions may coexist with normal 5S rRNA genes. The insertion sequences are typically capable of forming extended helices, which do not seemingly interfere with folding of the conserved core. The expanded 5S rRNAs have largely been overlooked in 5S rRNA databases.


Assuntos
Genoma Arqueal , Genoma Bacteriano , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 5S/genética , Alteromonadaceae/classificação , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Pareamento de Bases , Sequência de Bases , Clostridiales/classificação , Clostridiales/genética , Clostridiales/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/metabolismo , Halobacteriales/classificação , Halobacteriales/genética , Halobacteriales/metabolismo , Conformação de Ácido Nucleico , Filogenia , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico 5S/química , RNA Ribossômico 5S/metabolismo , Thermoanaerobacterium/classificação , Thermoanaerobacterium/genética , Thermoanaerobacterium/metabolismo
11.
Biotechnol Bioeng ; 118(3): 1066-1090, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33241850

RESUMO

Lignocellulosic biofuels and chemicals have great potential to reduce our dependence on fossil fuels and mitigate air pollution by cutting down on greenhouse gas emissions. Chemical, thermal, and enzymatic processes are used to release the sugars from the lignocellulosic biomass for conversion to biofuels. These processes often operate at extreme pH conditions, high salt concentrations, and/or high temperature. These harsh treatments add to the cost of the biofuels, as most known biocatalysts do not operate under these conditions. To increase the economic feasibility of biofuel production, microorganisms that thrive in extreme conditions are considered as ideal resources to generate biofuels and value-added products. Halophilic archaea (haloarchaea) are isolated from hypersaline ecosystems with high salt concentrations approaching saturation (1.5-5 M salt concentration) including environments with extremes in pH and/or temperature. The unique traits of haloarchaea and their enzymes that enable them to sustain catalytic activity in these environments make them attractive resources for use in bioconversion processes that must occur across a wide range of industrial conditions. Biocatalysts (enzymes) derived from haloarchaea occupy a unique niche in organic solvent, salt-based, and detergent industries. This review focuses on the use of haloarchaea and their enzymes to develop and improve biofuel production. The review also highlights how haloarchaea produce value-added products, such as antibiotics, carotenoids, and bioplastic precursors, and can do so using feedstocks considered "too salty" for most microbial processes including wastes from the olive-mill, shell fish, and biodiesel industries.


Assuntos
Biocombustíveis , Produtos Biológicos/metabolismo , Halobacteriales , Halobacteriales/genética , Halobacteriales/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Salinidade , Cloreto de Sódio
12.
Genes (Basel) ; 11(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252451

RESUMO

Halophilic microorganisms are found in all domains of life and thrive in hypersaline (high salt content) environments. These unusual microbes have been a subject of study for many years due to their interesting properties and physiology. Study of the genetics of halophilic microorganisms (from gene expression and regulation to genomics) has provided understanding into mechanisms of how life can occur at high salinity levels. Here we highlight recent studies that advance knowledge of biological function through study of the genetics of halophilic microorganisms and their viruses.


Assuntos
Archaea/genética , Halobacteriales/genética , Tolerância ao Sal/genética , Archaea/metabolismo , Cloreto de Sódio/metabolismo
13.
Genes (Basel) ; 10(5)2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137536

RESUMO

Salt mines are among the most extreme environments as they combine darkness, low nutrient availability, and hypersaline conditions. Based on comparative genomics and transcriptomics, we describe in this work the adaptive strategies of the true halophilic fungus Aspergillus salisburgensis, found in a salt mine in Austria, and compare this strain to the ex-type halotolerant fungal strain Aspergillus sclerotialis. On a genomic level, A. salisburgensis exhibits a reduced genome size compared to A. sclerotialis, as well as a contraction of genes involved in transport processes. The proteome of A. sclerotialis exhibits an increased proportion of alanine, glycine, and proline compared to the proteome of non-halophilic species. Transcriptome analyses of both strains growing at 5% and 20% NaCl show that A. salisburgensis regulates three-times fewer genes than A. sclerotialis in order to adapt to the higher salt concentration. In A. sclerotialis, the increased osmotic stress impacted processes related to translation, transcription, transport, and energy. In contrast, membrane-related and lignolytic proteins were significantly affected in A. salisburgensis.


Assuntos
Aspergillus/genética , Tolerância ao Sal/genética , Aspergillus/metabolismo , Áustria , Biologia Computacional/métodos , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Genoma , Genômica/métodos , Halobacteriales/genética , Pressão Osmótica/fisiologia , Filogenia , Proteoma/genética , Cloreto de Sódio/metabolismo , Transcriptoma
14.
Mol Biol Rep ; 46(3): 3275-3286, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30993582

RESUMO

It was confirmed that several enzymes have anti-cancer activity. The enzymes L-asparaginase, L-glutaminase, and L-arginase were chosen according to amino acids starvation in cancer cells and screened in halophilic and halotolerant bacteria, given probably less immunological reactions of halophilic or halotolerant enzymes in patients. Out of 110 halophilic and halotolerant strains, isolated from different saline environments in Iran and screened, some could produce a variety of anticancer enzymes. A total of 29, 4, and 2 strains produced L-asparaginase, L-glutaminase, and L-arginase, respectively. According to the phenotypic characteristics and partial 16S rRNA gene sequence analysis, the positive strains-strains with the ability to produce these anticancer enzymes-were identified as the members of the genera: Bacillus, Dietzia, Halobacillus, Rhodococcus, Paenibacillus and Planococcus as Gram-positive bacteria and Pseudomonas, Marinobacter, Halomonas, Idiomarina, Vibrio and Stappia as Gram-negative bacteria. The production of anticancer enzymes was mostly observed in the rod-shaped Gram-negative isolates, particularly in the members of the genera Halomonas and Marinobacter. Most of the enzymes were produced in the stationary phase of growth and the maximum enzyme activity was experienced in strain GBPx3 (Vibrio sp.) for L-asparaginase at 1.0 IU/ml, strain R2S25 (Rhodococcus sp.) for L-glutaminase at 0.6 IU/ml and strain GAAy3 (Planococcus sp.) for L-arginase at 3.1 IU/ml. The optimum temperature and pH for L-asparaginase and L-glutaminase activities in selected strains were similar to the physiological conditions of human body and the enzymes could tolerate NaCl up to 7.5% concentration.


Assuntos
Bactérias/genética , Tolerância ao Sal/genética , Antineoplásicos , Asparaginase/metabolismo , DNA Bacteriano/genética , Halobacteriales/genética , Irã (Geográfico) , Filogenia , RNA Ribossômico 16S/genética , Solução Salina , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
15.
Vopr Virusol ; 63(5): 197-201, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30550095

RESUMO

Тhе kingdom Archaea, as well as Bacteria, belongs to the overkingdom Prokaryota. Halophilic archaea (Halorubrum lacusprofundi) isolated from Antarctic saline lakes contain plasmids (pR1SE) that code proteins taking part in the formation of membranes of archaea vesicles. The molecular and biological properties of pR1SE and the peculiarity of its interaction with sensitive cells are considered in this article. The role of structural proteins coded by pR1S in the process of formation of vesicle membrane complex is paid special attention. Plasmid-containing archaea vesicles model some properties of viruses. Archaea plasmids can be viewed as possible ancestors of DNA-containing viruses.


Assuntos
DNA Viral/genética , Halobacteriales/genética , Halorubrum/genética , Vírus/genética , Regiões Antárticas , Archaea/genética , Archaea/virologia , Halorubrum/virologia , Lagos/microbiologia , Plasmídeos/genética , Tolerância ao Sal/genética
16.
Sci Rep ; 8(1): 16376, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401914

RESUMO

Biological network alignment aims to discover important similarities and differences and thus find a mapping between topological and/or functional components of different biological molecular networks. Then, the mapped components can be considered to correspond to both their places in the network topology and their biological attributes. Development and evolution of biological network alignment methods has been accelerated by the rapidly increasing availability of such biological networks, yielding a repertoire of tens of methods based upon graph theory. However, most biological processes, especially the metabolic reactions, are more sophisticated than simple pairwise interactions and contain three or more participating components. Such multi-lateral relations are not captured by graphs, and computational methods to overcome this limitation are currently lacking. This paper introduces hypergraphs and association hypergraphs to describe metabolic networks and their potential alignments, respectively. Within this framework, metabolic networks are aligned by identifying the maximal Z-eigenvalue of a symmetric tensor. A shifted higher-order power method was utilized to identify a solution. A rotational strategy has been introduced to accelerate the tensor-vector product by 250-fold on average and reduce the storage cost by up to 1,000-fold. The algorithm was implemented on a spark-based distributed computation cluster to significantly increase the convergence rate further by 50- to 80-fold. The parameters have been explored to understand their impact on alignment accuracy and speed. In particular, the influence of initial value selection on the stationary point has been simulated to ensure an accurate approximation of the global optimum. This framework was demonstrated by alignments among the genome-wide metabolic networks of Escherichia coli MG-1655 and Halophilic archaeon DL31. To our knowledge, this is the first genome-wide metabolic network alignment at both the metabolite level and the enzyme level. These results demonstrate that it can supply quite a few valuable insights into metabolic networks. First, this method can access the driving force of organic reactions through the chemical evolution of metabolic network. Second, this method can incorporate the chemical information of enzymes and structural changes of compounds to offer new way defining reaction class and module, such as those in KEGG. Third, as a vertex-focused treatment, this method can supply novel structural and functional annotation for ill-defined molecules. The related source code is available on request.


Assuntos
Algoritmos , Genômica/métodos , Redes e Vias Metabólicas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Halobacteriales/genética , Halobacteriales/metabolismo , Fatores de Tempo
17.
Mar Drugs ; 16(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213145

RESUMO

The solar salterns located in the Odiel marshlands, in southwest Spain, are an excellent example of a hypersaline environment inhabited by microbial populations specialized in thriving under conditions of high salinity, which remains poorly explored. Traditional culture-dependent taxonomic studies have usually under-estimated the biodiversity in saline environments due to the difficulties that many of these species have to grow at laboratory conditions. Here we compare two molecular methods to profile the microbial population present in the Odiel saltern hypersaline water ponds (33% salinity). On the one hand, the construction and characterization of two clone PCR amplified-16S rRNA libraries, and on the other, a high throughput 16S rRNA sequencing approach based on the Illumina MiSeq platform. The results reveal that both methods are comparable for the estimation of major genera, although massive sequencing provides more information about the less abundant ones. The obtained data indicate that Salinibacter ruber is the most abundant genus, followed by the archaea genera, Halorubrum and Haloquadratum. However, more than 100 additional species can be detected by Next Generation Sequencing (NGS). In addition, a preliminary study to test the biotechnological applications of this microbial population, based on its ability to produce and excrete haloenzymes, is shown.


Assuntos
Bacteroidetes/genética , Halobacteriales/genética , Salinidade , Microbiologia da Água , Bacteroidetes/isolamento & purificação , Biodiversidade , Biotecnologia/métodos , DNA Bacteriano/isolamento & purificação , Variação Genética , Halobacteriales/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Áreas Alagadas
18.
Syst Appl Microbiol ; 41(4): 355-362, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29752017

RESUMO

Six strains of extremely halophilic and alkaliphilic euryarchaea were enriched and isolated in pure culture from surface brines and sediments of hypersaline alkaline lakes in various geographical locations with various forms of insoluble cellulose as growth substrate. The cells are mostly flat motile rods with a thin monolayer cell wall while growing on cellobiose. In contrast, the cells growing with cellulose are mostly nonmotile cocci covered with a thick external EPS layer. The isolates, designated AArcel, are obligate aerobic heterotrophs with a narrow substrate spectrum. All strains can use insoluble celluloses, cellobiose, a few soluble glucans and xylan as their carbon and energy source. They are extreme halophiles, growing within the range from 2.5 to 4.8M total Na+ (optimum at 4M) and obligate alkaliphiles, with the pH range for growth from 7.5 to 9.9 (optimum at 8.5-9). The core archaeal lipids of strain AArcel5T were dominated by C20-C20 dialkyl glycerol ether (DGE) (i.e. archaeol) and C20-C25 DGE in nearly equal proportion. The 16S rRNA gene analysis indicated that all six isolates belong to a single genomic species mostly related to the genera Saliphagus-Natribaculum-Halovarius. Taking together a substantial phenotypic difference of the new isolates from the closest relatives and the phylogenetic distance, it is concluded that the AArcel group represents a novel genus-level branch within the family Natrialbaceae for which the name Natronobiforma cellulositropha gen. nov., sp. nov. is proposed with AArcel5T as the type strain (JCM 31939T=UNIQEM U972T).


Assuntos
Halobacteriales , Lagos/microbiologia , Salinidade , Cloreto de Sódio/análise , Celobiose/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/análise , Halobacteriales/classificação , Halobacteriales/genética , Halobacteriales/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Biotechnol Lett ; 39(12): 1793-1800, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28900776

RESUMO

Halophilic archaea are unique microorganisms adapted to survive under high salt conditions and biomolecules produced by them may possess unusual properties. Haloarchaeal metabolites are stable at high salt and temperature conditions that are useful for industrial applications. Proteins and enzymes of this group of archaea are functional under salt concentrations at which bacterial counterparts fail to be active. Such properties makes haloarchaeal enzymes suitable for salt-based applications and their use under dehydrating conditions. For example, bacteriorhodopsin or the purple membrane protein present in halophilic archaea has the most recognizable applications in photoelectric devices, artificial retinas, holograms etc. Haloarchaea are also useful for bioremediation of polluted hypersaline areas. Polyhydroxyalkanoates and exopolysccharides produced by these microorganisms are biodegradable and have the potential to replace commercial non-degradable plastics and polymers. Moreover, halophilic archaea have excellent potential to be used as drug delivery systems and for nanobiotechnology by virtue of their gas vesicles and S-layer glycoproteins. Despite of possible applications of halophilic archaea, laboratory-to-industrial transition of these potential candidates is yet to be established.


Assuntos
Biotecnologia , Halobacteriales , Biodegradação Ambiental , Halobacteriales/enzimologia , Halobacteriales/genética , Halobacteriales/metabolismo , Microbiologia Industrial , Nanotecnologia
20.
BMC Genomics ; 18(1): 510, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673248

RESUMO

BACKGROUND: Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. RESULTS: Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. CONCLUSIONS: Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.


Assuntos
Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Genoma Arqueal/genética , Halobacteriales/metabolismo , Redes e Vias Metabólicas/genética , Perfilação da Expressão Gênica , Halobacteriales/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...